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Abstract

Objective

The objective is to present a proof-of-concept of a semi-automatic method to reduce hippo-

campus segmentation time on magnetic resonance images (MRI).

Materials and methods

FAst Segmentation Through SURface Fairing (FASTSURF) is based on a surface fairing

technique which reconstructs the hippocampus from sparse delineations. To validate FAS-

TSURF, simulations were performed in which sparse delineations extracted from full manual

segmentations served as input. On three different datasets with different diagnostic groups,

FASTSURF hippocampi were compared to the original segmentations using Jaccard over-

lap indices and percentage volume differences (PVD). In one data set for which back-to-

back scans were available, unbiased estimates of overlap and PVD were obtained. Using

longitudinal scans, we compared hippocampal atrophy rates measured by manual, FAS-

TSURF and two automatic segmentations (FreeSurfer and FSL-FIRST).

Results

With only seven input contours, FASTSURF yielded mean Jaccard indices ranging from 72

(±4.3)% to 83(±2.6)% and PVDs ranging from 0.02(±2.40)% to 3.2(±3.40)% across the

three datasets. Slightly poorer results were obtained for the unbiased analysis, but the per-

formance was still considerably better than both tested automatic methods with only five

contours.
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Conclusions

FASTSURF segmentations have high accuracy and require only a fraction of the delineation

effort of fully manual segmentation. Atrophy rate quantification based on completely manual

segmentation is well reproduced by FASTSURF. Therefore, FASTSURF is a promising tool

to be implemented in clinical workflow, provided a future prospective validation confirms our

findings.

1. Introduction

Hippocampus segmentation on structural magnetic resonance images (MRI) is used to moni-

tor morphological hippocampal changes which occur in diseases like Alzheimer’s disease

(AD), depression, epilepsy, and schizophrenia [1–4]. Hippocampal volume change is therefore

an important biomarker in the quantification of progressive neurodegenerative diseases such

as AD or mild cognitive impairment (MCI) [5,6]. In the last few years, hippocampal delinea-

tion has also gained importance in radiotherapy during prophylactic cranial irradiation (PCI)

aimed at avoiding lung tumour spread to the brain while sparing the hippocampus and reduce

neurotoxicity [7–11].

The hippocampus is a small archicortical brain structure which shows limited contrast on

structural MRI scans because adjacent structures, such as the amygdala, caudate nucleus and

the thalamus typically have similar intensity [12]. This makes hippocampus segmentation a

difficult task, regardless of the degree of automation used. Manual segmentation requires

extensive training and is labour intensive. Multiple methods have been developed to semi-

automatically or fully automatically segment the hippocampus, most of which are discussed in

a recent review study by Dill et al [13]. Automatic methods are usually based on deformable

models, single-, multiple- or probabilistic-atlases, while semi-automatic methods also involve

manual pre- or post-processing. According to Dill et al., the reasons why these methods are

still not ready for routine clinical use include the sensitivity of automatic methods to the choice

of (patient group dependent) atlases, the computational cost of multiple atlas registration, the

lack of validation for different data sets, and the complexity of the required manual pre- and

post-processing procedures [13].

Two of the most commonly used automatic segmentation methods in the academic com-

munity, FSL-FIRST [14] and FreeSurfer [12,15], have been compared to manual hippocampus

segmentation in multiple studies [12,14,16–23,24–31]. Generally, the conclusion was that

automatic segmentation methods are promising for population studies, but they need to be

further improved for clinical use. A recent study from Mulder and colleagues showed for

example that FreeSurfer obtained better atrophy rate reproducibility than manual hippocam-

pus segmentation, but only when FreeSurfer’s outlier segmentations were removed, illustrating

that individual subject hippocampus outlining accuracy is not good enough to rely on without

expert visual inspection [31].

For hippocampal volume measurements in clinical trials, manual delineation is usually the

method of choice [32]. However, even manual segmentations are biased because the precise

definition of the hippocampal region varies across laboratories resulting in hippocampal vol-

umes ranging from 2 to 5.3 cm3 in studies with different diagnostic groups and outlining pro-

tocols [33,34]. It is therefore of crucial importance that manual outlining protocols are

standardized as much as possible. Different application areas have developed their own stan-

dards. Within neurology, an initiative has been taken to develop a harmonized hippocampal
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outlining protocol (HarP), by merging hippocampal boundary definitions from different out-

lining protocols [34–36]. Within radiotherapy, due to the integration of hippocampal avoid-

ance treatment plans in radiotherapy, another hippocampus outlining protocol has been

developed by the radiotherapy oncology group (RTOG, [37]). These protocols differ in terms

of the definitions of boundaries and the anatomical orientation of the images used for

outlining.

Manual segmentation protocols are mainly focussed on reproducibility and standardiza-

tion, whereas the delineation efficiency is greatly ignored. Typically, it requires one to two

hours to segment a complete hippocampus pair. With this study, we present a novel semi-

automatic hippocampus segmentation method: FAst Segmentation Through SURface Fairing

(FASTSURF). The method is based on mesh processing techniques, is computationally inex-

pensive and does not require a priori knowledge such as atlases or models. The underlying

idea of FASTSURF is that the slice to slice changes of hippocampal cross-sections are generally

small. Therefore, using certain smoothness constraints, the hippocampal shape can be recon-

structed from a few manually delineated cross-sections. In this study, these few delineated

cross-sections are simulated from full manual delineations. FASTSURF is then validated by

comparing it to these fully manual segmentations, using different datasets from different diag-

nostic groups. Because the underlying principle is applicable to different outlining protocols, it

is tested for the HarP and RTOG protocols and for a protocol from Jack et al. [38]. Finally, a

comparison is made with automatically segmented hippocampi using FreeSurfer [12,15] and

FSL-FIRST [14].

2. Materials and methods

2.1. Datasets and MRI acquisition

We used three different datasets to validate our method, one dataset with subjects from the

Netherlands Cancer Institute–Antoni van Leeuwenhoek (NKI-AvL) hospital in Amsterdam,

the Netherlands (Dataset 1, described below) and two different datasets from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (Datasets 2 and 3, described below). Data-

sets 2 and 3 used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael W. Weiner, MD.

2.1.1. Dataset 1. Dataset 1 is a subset of data from a multicentre phase III trial in which

patients with small cell lung cancer (SCLC) receive either standard PCI treatment or PCI treat-

ment with hippocampal avoidance (Clinical trials.gov identifier: NCT01780675). MRI data

were anonymously accessed and collected at the NKI-AvL. The imaging protocol was the same

as in the ADNI GO study. Sagittal 3D T1-weighted MRI were acquired with a magnetization

prepared rapid acquisition gradient echo (MPRAGE) sequence using a 3T Philips Achieva

with an eight channel head coil. For all MRIs, pixels in-plane were 1mm2 with a slice thickness

of 1.2mm. Data and hippocampus delineations of 12 patients who received PCI with hippo-

campal avoidance were collected.

2.1.2. Dataset 2. Dataset 2 was taken from the ADNI database with images and training

labels of 135 subjects of different diagnostic groups, acquired with two different MRI scanner

field strengths of 1.5T and 3T using various MRI scanner vendors (Philips, Siemens and GE).

Sagittal 3D T1 weighted MPRAGE images were acquired for 44 healthy control (CTRL), 46

MCI and 45 AD subjects. In-plane pixel sizes ranged from 0.86mm to 1.25mm and slice thick-

ness was 1.2mm. In [39] a detailed description of the imaging protocol is given.

2.1.3. Dataset 3. The third dataset is the same ADNI dataset as was used in [31] and [40].

The dataset consists of 80 subjects, 20 CTRL, 40 MCI and 20 AD subjects. For each subject,
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four volumetric MRI scans were collected. Two MRI back-to-back (BTB) scans were acquired

at time-point baseline (BL-A and BL-B) and two MRI BTB scans one year later (M12-A and

M12-B). The BTB scans were acquired in a single session with just a few seconds between

acquisitions but processed independently. The BL scans were acquired between September

2005 and August 2007. Sagittal 3D T1 weighted MPRAGE images were acquired at 1.5T field

scanners from different vendors (Philips, Siemens and GE). The four scans for each subject

were acquired with the same MRI scanner and protocol. In-plane pixel sizes ranged from

0.93mm to 1.2mm and slice thickness was 1.2mm. Images were not further processed other

than the default scanner corrections and visual inspection of each scan ensured good quality.

In [41] a more detailed description of the MRI acquisition can be found.

2.2. Manual and automatic hippocampus segmentation

2.2.1. Manual hippocampus segmentation for dataset 1. The clinical Dataset 1 was

delineated using the RTOG protocol for hippocampal sparing [37]. Using a rigid body registra-

tion, MRIs were registered to treatment-planning CTs with 1mm slices thickness and in-plane

pixel sizes varying between 0.6mm and 0.7mm. Hippocampi were delineated on these resliced

axial MRI slices. The most inferior slice to delineate the hippocampus is defined to be the slice

on which the temporal horn appears next to the lateral ventricle. Hippocampal grey matter is

segmented from the anterior to the superior direction while avoiding the fimbria. The anterior

boundary is defined by the temporal horn and the amygdala, the medial boundary by the

uncus. In postero-cranial direction the medial boundary is formed by the lateral edge of the

quadrageminal cistern. On the last slices in postero-cranial direction the hippocampus is

located antero-medially to the atrium of the lateral ventricle and hippocampus segmentation

ends when the crux of the fornix emerges. The average number of slices on which the hippo-

campus was outlined is 21.1 (see Table 1).

2.2.2. Manual hippocampus segmentation for dataset 2. Scans of dataset 2 were outlined

using the EADC-ADNI Harmonized Protocol for Hippocampal Segmentation (HarP)

described in [35] and segmentation files were obtained from the HarP project’s website

(http://www.hippocampal-protocol.net/). Briefly, MRIs were aligned along the anterior and

posterior commissures of the brain (AC-PC line) by using a rigid body registration to the MNI

ICBM152 template (International Consortium for Brain Mapping) with 1x1x1mm voxel

dimensions and images were resampled with trilinear interpolation. The most posterior slice

where the hippocampus is segmented is defined to be the slice on which a small ovoid grey

matter mass is visible close to the lateral ventricle. The most anterior slice to outline the hippo-

campus is defined to be the slice on which the alveus can be seen below the amygdala. For

detailed boundary descriptions and figures we refer the reader to the HarP literature [34–36].

2.2.3. Manual hippocampus segmentation for dataset 3. Scans of (ADNI) Dataset 3

were segmented at the Image Analysis Center (IAC, VU University Medical Center (VUmc)

Table 1. For all subjects of each dataset, the average number of slices on which the hippocampus was segmented

is shown.

Dataset N. of Slc.

Mean STD

1 21.1 ±4.14

2 37.3 ±3.74

3 19.9 ±1.48

N. of Slc. Number of Slices, STD Standard Deviation

https://doi.org/10.1371/journal.pone.0210641.t001
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Amsterdam) using a segmentation protocol from [38], previously described in [31,38,42]. For

all subjects the BL MRI scans were reformatted in a plane perpendicular to the long axis of the

left hippocampus resulting in a pseudo coronal orientation. Sinc interpolation was used, slice

thickness was 2mm, and the original in-plane resolution was maintained. M12 scans were rig-

idly registered to BL scans, again using sinc interpolation. All hippocampi were segmented by

a single well-trained expert of the IAC using in-house developed software (Show_Images

3.7.1.0). Following the IAC protocol, BL segmentations were shown alongside M12 scans

when M12 scans were segmented. However, the technician was blinded to the diagnosis and

BTB scans were given in random order.

The hippocampal formation consists of the Ammon’s horn, dentate gyrus, alveus and fim-

bria and the subiculum. When detecting the total length of the crux of the fornix the most pos-

terior slice to outline the hippocampus can be seen. The inferior boundary is formed by the

subiculum and the parahippocampal gyrus and the superior boundary by the CSF of the tem-

poral horn and the alveus. The lateral border is defined by the CSF and the temporal horn and

the alveus, while the medial border is defined by the CSF in the cisterna ambiens and the trans-

verse fissure. The most anterior slice on which the hippocampus is outlined, is defined to be

the slice on which the hippocampus appears alongside the amygdala and CSF appears on the

medial side of the hippocampus.

2.2.4. FSL-FIRST hippocampus segmentation (only dataset 3). FSL-FIRST is an auto-

matic segmentation tool based on deformable models. Details are described in [43] and [14].

Briefly, with a set of manual segmented hippocampi from the Center for Morphometric Analy-

sis (CMA), Massachusetts General Hospital (MGH) Boston, shape and appearance models

were constructed. For this, a point distribution model was created using parameterized surface

meshes created from the manual segmentations taking into account the intensity around the

tissue border. To segment a new MRI, FSL-FIRST uses intensity values from the MRI and

searches through linear combinations of shape variation modes to find the most probable

shape. Before segmentation, FSL-FIRST performs a two-stage affine registration to MNI152

standard space at 1mm resolution. Then, by using FAST voxel-wise segmentation software

[44] the hippocampus mesh is converted to a labelled image. We used FSL-FIRST v.5.0.4 with

the script command run_first_all. The voxel-wise hippocampal labels produced by FSL-FIRST

are in native MRI scan space.

2.2.5. FreeSurfer hippocampus segmentation (only dataset 3). FreeSurfer automatic

segmentation for subcortical structures involves multiple steps and is described in detail in

[12]. First, MRI scans are transformed to a conformed 1mm3 2563 space. FreeSurfer performs

bias-field correction and intensity normalization, and strips the skull to transform an atlas to

the brain. Voxels are assigned to subcortical structures using prior probabilistic intensity and

tissue class information.

To obtain FreeSurfers hippocampus segmentation FreeSurfer version 5.3 was used with the

longitudinal stream for longitudinal data (Dataset 3) and cross-sectional stream for cross-sec-

tional data. FreeSurfer’s voxelwise hippocampal labels from the cross-sectional and longitudi-

nal stream were converted back to the native MR image space using the procedure provided

by FreeSurfer (mri_label2vol).

Like FSL-FIRST, FreeSurfer uses the CMA segmentation scheme for subcortical segmenta-

tion. The segmentation protocol can be found on their website (http://freesurfer.net/fswiki/

CMA). The substructures of this outlining protocol are similar to the substructures mentioned

in the outlining protocol from [38] of dataset 3: dentate gyrus, cornu ammonis, subiculum,

fimbria and alveus.

2.2.6. Surface reconstruction and volumetric analysis. We converted all voxel-wise hip-

pocampal labels to meshes using the marching cube algorithm. To reduce interpolation errors
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as much as possible, all volumes and overlap indices were computed from these meshes after

applying the appropriate registration transformation as described previously in [40].

Using IBM SPSS Statistics for Windows v. 22 Armonk, NY: IBM Corp we performed a one-

way repeated measures ANOVA to determine volumetric differences in dataset 3 between

manual and automatic segmentation methods. A post hoc analysis was performed after Bon-

ferroni’s correction.

2.3. FASTSURF

2.3.1. Theory. FASTSURF is based on sparse hippocampus contouring, with the missing

contours computed automatically, under the constraint that contours of the most extreme

slices of the hippocampus are available. We define a contour as a closed tracing of the hippo-

campus perimeter on a single slice. Delineated contours are connected by constructing a trian-

gular mesh of which some nodes correspond to the delineated points and the remaining

points move to intermediate positions determined by applying certain smoothness constraints.

This technique is known as surface fairing [45]. A schematic representation of delineated and

intermediate contours is represented in Fig 1.

The mesh so obtained can be considered as a graph, in which every vertex is connected to a

set of neighbours. Then, given the connectivity graph, the discrete Laplacian is defined as fol-

lows:

Ln;m ¼

1 if n ¼ m
� 1

NNeighboursðvnÞ
vnis adjacent to vm

0 otherwise

ð1Þ

8
>>><

>>>:

where the indices n andm refer to the mesh vertices and NNeighbours(vn) is the number of neigh-

bours of vertex vn. When all the edges are interpreted as springs with a fixed spring constant

and when a net force balance of zero is imposed on each vertex, both at known and unknown

vertices, optimal vertex positions are obtained by setting
P

mLn;mxm ¼
P

mLn;mym ¼
P

mLn;mzm ¼ 0 ð2Þ

where x, y, and z are vectors of the x-, y- and z-coordinates of all mesh vertices. Coordinates of

the unknown intermediate vertices can be found by moving all known points to the right hand

side of these equations and by solving the three sparse systems of equations, for which we used

the iterative bi-conjugate gradient method [46]. Finding the intermediate vertices with these

equations would lead to a surface of minimum area, orminimal surface, and no penalty is put

on the increased curvature at the delineated points. When minimizing the curvature instead of

surface area, a thin-plate surface is obtained, requiring only a minor modification of the equa-

tions. Translating continuous curvature minimization functions to a discrete triangle mesh

[45] leads to linear bi-Laplacian systems:

P
mLn;m

2xm ¼
P

mLn;m
2ym ¼

P
mLn;m

2zm ¼ 0 ð3Þ

This approach has similarities to spline interpolation, in which continuity of a function and

its derivatives is enforced at all edges and nodes and the interpolating triangles are curved.

However, in our approach the triangles are flat and a numerical approximation of the mini-

mum surface curvature, resulting to simpler and probably faster computations.

An example showing the difference between a Laplacian and bi-Laplacian solution is pre-

sented in Fig 2. In the remainder of this paper we use the term “FASTSURF segmentation” to
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denote sparse hippocampal outlines which were completed by solving the bi-Laplacian

systems.

2.3.2. Simulation of sparse delineation. To demonstrate the proof of concept, we simu-

lated sparse delineations to evaluate FASTSURF segmentation. Manually delineated hippo-

campus segmentations were converted to 3D meshes from which we extracted a number of

contours at regular intervals. The contours were extracted in the same direction in which the

hippocampus was segmented, i.e. for dataset 1 the contours were extracted in axial direction

and for dataset 2 and 3 in (pseudo) coronal direction. Then, we linearly interpolated a prede-

fined number of points on each contour and replaced the original contour points with the

interpolated ones to obtain the same number of points equally distributed on each contour.

Then, as a first approximation, contours were connected by straight lines and intermediate

Fig 1. Schematic representation of delineated and intermediate contours. Delineated contours are represented in red with known point positions, intermediate

contours are represented in blue with unknown point positions. The black dashed lines complete the triangulated mesh.

https://doi.org/10.1371/journal.pone.0210641.g001
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contours were created parallel to the simulated contours with the same predefined number of

points. A regular triangular mesh was defined, connecting the original and intermediate

points. Finally, by solving the bi-Laplacian systems, we obtained new vertex positions for the

points of the intermediate contours and updated the contours resulting in a smooth surface

mesh.

2.3.3. Comparison of FASTSURF segmentation to manual and automatic segmenta-

tion. We used overlap indices and percentage volume difference measures to compare FAS-

TSURF segmentation with completely manual hippocampus segmentation. The Jaccard index

was computed directly from the surface meshes by adopting a fine regular grid enclosing the

two surfaces. The Jaccard index was approximated by:

Jacc A;Bð Þ �
NA\B

NA[B
; ð4Þ

where NA\B and NA[B are the number of grid points inside the cross section and the union of

both surfaces, respectively. The Jaccard index is directly related to the Dice overlap index

(D = 2J/(J+1)). Hippocampus meshes from different MRI scans generally are in different

Fig 2. Surface reconstructions by solving a sparse system of equations with known points denoted in red. Left: Surface reconstruction using Laplacian operator.

Right: Surface reconstruction using bi-Laplacian operator (FASTSURF).

https://doi.org/10.1371/journal.pone.0210641.g002
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spaces. Before applying (4), we first performed a rigid body co-registration of the BTB MRI

scans with FSL-FLIRT [47,48] and applied the obtained registration parameters on the mesh

points of the hippocampi meshes to bring the meshes into the same space. Cross-sectional per-

centage volume difference was computed using:

PVD A;Bð Þ ¼ 2
VA � VB

VA þ VB
� 100; ð5Þ

and longitudinal percentage volume change was defined by:

PVC A;Bð Þ ¼
VA � VB

VA
� 100; ð6Þ

with VA being the volume of object A and similarly VB.

For dataset 3 we obtained FSL-FIRST and FreeSurfer hippocampus segmentations and

compared these segmentations to manual and FASTSURF segmentations. Using the longitudi-

nal BTB scans’ hippocampus segmentations of dataset 3, we computed atrophy rates as defined

in (6) using BL and M12 scans.

When comparing FASTSURF segmentations to manually outlined hippocampus segmenta-

tions, results will be biased because the input contours of the simulated sparse delineation are

taken from points very close to the fully outlined manual segmentations. Using the BTB scans

of dataset 3, we overcome this bias by comparing independent manually outlined hippocam-

pus segmentations from the A scans with FASTSURF segmentations from the B scans, and

vice versa. Having A and B scans from both BL and M12, this comparison can be performed

twice for each subject, which strengthens the statistical analysis. Using this comparison, we

were also able to quantify the bias. Without the availability of real segmented sparse contours,

we consider this comparison as an adequate unbiased test of our method’s performance. In the

remainder of this manuscript we call this “robustness analysis”. The robustness analysis was

performed for both manually and automatically segmented hippocampi. An unbiased atrophy

analysis could not be performed with the manual segmentations of this dataset, because the

hippocampi on the M12-A and M12-B scans were segmented alongside the corresponding

scans and segmentations of the BL time point, i.e. BL-A and BL-B respectively, to determine

longitudinal volume change. Therefore, the A and B scans cannot be fairly interchanged for

this type of analysis. Agreement, robustness and atrophy comparisons are illustrated in Fig 3

with coloured 3D meshes representing manual and FASTSURF segmentations from different

time-points.

All measurements were performed in groups (CTRL, MCI and AD). Furthermore, we

tested FASTSURF using different numbers of contours, with a minimum number of four con-

tours. We aimed to reduce the number of contours at least by half, thus for dataset 1 the num-

ber of contours used for hippocampus reconstruction ranged from 4–10, for dataset 2 it

ranged from 4–18 and for dataset 3 we used a range of 4–10. An example using FASTSURF

with different numbers of contours is presented in Fig 4.

2.3.4. Parameter tuning. Parameter refinement and bug-testing for FASTSURF was per-

formed on 10 randomly chosen MCI subjects’ hippocampal segmentations from Dataset 3,

using both BTB scans. These 10 subjects’ hippocampal segmentations were excluded in our

final analysis. We extracted 10 contours from these subjects’ segmentations and tested the

effects of the number of intermediate contours and the number of points used in the triangula-

tion step for each contour. Using the BTB scans’ segmented hippocampi, we performed agree-

ment and robustness analysis for FASTSURF segmentations with manual hippocampal

segmentations. Table 2 shows results for optimizing the number of intermediate contours
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(using 50 points per contour) and Table 3 shows the test results for optimizing the number of

points on each contour. In both tables means and standard deviations (STD) of resulting Jac-

card indices and PVDs are presented.

Fig 3. Schematic illustration of comparisons performed using the ADNI BTB dataset (Dataset 3). On the left-hand side labelled hippocampus segmentations from

different time-points are converted to meshes, contours are extracted and hippocampi are reconstructed using FASTSURF. The colours help to visually differentiate

between manual and FASTSURF segmentations. The boxes on the right-hand side illustrate the comparisons performed for this particular dataset.

https://doi.org/10.1371/journal.pone.0210641.g003

Fig 4. FASTSURF segmentation (green) using different numbers of contours (4, 7 and 10 contours) from a full manual segmentation (yellow). The red dots

represent input contours.

https://doi.org/10.1371/journal.pone.0210641.g004
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Table 2 shows that agreement and robustness hardly depend on number of intermediate

contours, but three intermediate contours give best results. With three intermediate contours

we optimized the number of points for each contour. Table 3 shows that Jaccard indices

increase as a function of this number, until about 100 points per contour. PVDs slightly get

closer to zero with increasing number of points per contour, but computational times also

increase. Therefore, we chose to perform our final analysis with 100 points per contour and

three intermediate contours.

3. Results

Hippocampal volumes for specific groups are presented in Table 4, in which for all datasets left

and right hippocampal volumes were grouped together, and for dataset 3 hippocampal vol-

umes from all time-points were grouped together. Because of the violation of sphericity, the

univariate repeated measures ANOVA was Greenhouse-Geisser corrected. Mean hippocampal

volumes showed a significant dependence on method (BL left p = 0.000459, BL right p = 1.4E-

10, M12 left p = 0.000002, M12 right p = 6.3E-14). The post hoc analysis showed that manual BL

left and right did not significantly differ from FreeSurfer’s hippocampal volumes (p = 0.341

and p = 0.070), but they were significantly different from FSL-FIRST volumes (p = 0.000139

Table 2. From 10 randomly chosen MCI subjects’ BTB hippocampus segmentations, 10 contours were extracted to simulate delineations and the number of inter-

mediate contours between subsequent delineation simulations was varied. Agreement and robustness were determined as described in the main text.

No. of Int. Cont. Agreement Robustness

Jaccard PVD Jaccard PVD

Mean STD Mean STD Mean STD Mean STD

1 .853 .0240 3.396 2.2989 .778 .0239 -3.395 4.2504

2 .851 .0241 2.983 2.0606 .777 .0239 -2.982 4.1015

3 .849 .0242 2.974 1.9974 .776 .0240 -2.973 4.0589

4 .845 .0242 3.169 1.9991 .775 .0241 -3.168 4.0546

5 .841 .0245 3.511 2.0312 .772 .0240 -3.510 4.0688

6 .836 .0246 3.977 2.0851 .770 .0240 -3.976 4.0973

No. of Int. Cont. Number of Intermediate Contours, PVD Percentage Volume Difference, STD Standard Deviation

https://doi.org/10.1371/journal.pone.0210641.t002

Table 3. From 10 randomly chosen MCI subjects’ BTB hippocampus segmentations, 10 contours simulated and, using three intermediate contours, the number of

points for each contour was varied. Agreement and robustness were determined as described in the main text.

No. of Pnts. Agreement Robustness

Jaccard PVD Jaccard PVD

Mean STD Mean STD Mean STD Mean STD

10 .561 .0253 44.900 3.9171 .539 .0234 -44.882 5.5727

50 .849 .0242 2.974 1.9974 .776 .0240 -2.973 4.0589

100 .856 .0241 2.139 1.8827 .777 .0237 -2.138 4.0104

150 .857 .0247 2.002 1.8696 .776 .0237 -2.001 4.0094

200 .856 .0247 1.960 1.8667 .776 .0238 -1.960 4.0092

250 .856 .0247 1.941 1.8622 .776 .0234 -1.941 4.0087

300 .856 .0246 1.932 1.8645 .776 .0235 -1.932 4.0110

350 .857 .0245 1.927 1.8649 .776 .0235 -1.926 4.0122

400 .857 .0246 1.923 1.8624 .776 .0235 -1.922 4.0112

No. of Pnts. Number of Points, PVD Percentage Volume Difference, STD Standard Deviation

https://doi.org/10.1371/journal.pone.0210641.t003
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and p = 1.8E-10). FSL-FIRST BL left was not significantly different from FreeSurfers’ BL left

but right hippocampal volumes were significantly different (p = 0.070 and p = 0.000009). Man-

ual M12 left and right hippocampal volumes were significantly different from both FSL-FIRST

and FreeSurfers’ volumes (Manual vs. FSL-FIRST: p = 8.9E-8 (left) and p = 8.7E-14 (right);

Manual vs. FreeSurfer: p = 0.039 (left) and p = 0.011(right)). FSL-FIRST M12 left and right

hippocampal volumes were significantly different than FreeSurfers’ volumes (p = 0.030 (left)

and p = 0.000003 (right)).

The volumes differ between datasets due to different operational procedures and protocols.

For instance, hippocampi outlined on resampled MRI of dataset 2 generally have more con-

tours than hippocampi from the other datasets and hippocampi from dataset 1 are outlined in

axial direction. Fig 5 illustrates these differences by presenting surface renderings of one exam-

ple from each dataset for manual and FASTSURF hippocampi using seven contours.

3.1. Results for dataset 1

Hippocampi in dataset 1 were outlined using the RTOG protocol and FASTSURF segmenta-

tions were generated using 4 to 10 contours. Jaccard indices and PVDs are plotted in boxplots

in Fig 6. S1 Table displays all corresponding mean and standard deviations for Fig 6. As

expected, with increasing number of contours Jaccard indices increase, and PVDs get close to

zero. It should be noted, ignoring the bias in these results for now, that with only five contours

a Jaccard index higher than 0.67 (equivalent to a Dice overlap of 0.8) is reached. This is consid-

ered as good accuracy for small structures as the hippocampus [12,13]. PVDs for six or more

contours are relatively consistent. Five to six contours would mean a theoretical time reduction

to approximately one fourth of the original time needed, considering that the mean number of

hippocampal contours for this dataset is ~21.

3.2. Results for dataset 2

For dataset 2 we performed a similar analysis separately for each patient group. Fig 7 shows

overlap indices and PVDs of FASTSURF and manual segmentations per group as a function of

the number of input contours. For enhanced visibility, we scaled the PVD boxplot cutting off

larger outliers for four to six contours, but all mean and standard deviations can be found in

the S2 Table. With eight or more contours, Jaccard indices above 0.67 and relatively low PVDs

were obtained. In this dataset using the HarP protocol for segmentation, the mean number of

hippocampal contours is ~37, meaning that eight or nine contours would reduce the outlining

time to approximately one fourth of the full outlining time, comparable to dataset 1. From the

Jaccard indices of Fig 7 it can be seen that the MCI group has slightly lower Jaccard indices

than the CTRL group and the AD group has slightly lower indices than the MCI group. Over-

lap indices tend to be lower for smaller volumes. To determine to what extent the decrease in

Table 4. Volumes extracted from hippocampal meshes. Volumes are shown in mm3. Left and right hippocampal volume was grouped together. For dataset 3 hippo-

campi from all time-points were grouped together.

Group Dataset 1 Dataset 2 Dataset 3

Manual

Dataset 3

FSL-FIRST

Dataset 3

FreeSurfer

SCLC 2227.0(±502.38)

CTRL 3108.1(±512.7) 3351.5(±405.52) 3537.2(±452.51) 3555.4(±485.45)

MCI 2650.8(±467.8) 3082.7(±482.70) 3297.6(±540.39) 3158.3(±565.66)

AD 2364.7(±528.94) 2760.1(±572.06) 2898.0(±530.05) 2703.2(±640.09)

SCLC Small Cell Lung Cancer, CTRL Control,MCI Mild cognitive impairment, AD Alzheimer Disease

https://doi.org/10.1371/journal.pone.0210641.t004
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Jaccard indices in Fig 7 is a volume effect we plotted the volumes of manual segmentations

against the observed Jaccard indices in Fig 8. In the same plot stacked histograms are shown to

illustrate frequencies of volumes in specific groups. From the scatter plot it can be observed

that Jaccard indices increase with hippocampal volume and that all three patient groups

behave identically, i.e. that the volume difference drives the difference in Jaccard index.

3.3. Results for dataset 3

For dataset 3 we obtained 280 hippocampus segmentations for 70 subjects with 4 MRIs at dif-

ferent time-points. Data of 10 MCI subjects were used for algorithm optimization and were

therefore excluded from this analysis. We performed agreement (biased), robustness (unbi-

ased) and atrophy (biased) analyses to assess FASTSURF’s performance. Fig 9 shows the biased

Jaccard indices and PVDs comparing manual segmentations of the BL scans with correspond-

ing FASTSURF segmentations for each diagnostic group. In both boxplots left and right hip-

pocampus segmentations were grouped together. In the right part of each panel, the results for

the automatic methods are shown. One can observe that FASTSURF segmentation with only

five contours agree better with manual than fully automatic methods and with six contours

PVDs are consistently close to the zero line.

Fig 10 presents the corresponding unbiased robustness analysis. Similar as for Fig 7 and Fig

9, it is visible in Fig 10 that results do not change much after a certain contour number

Fig 5. Differences between manual hippocampus segmentations and FASTSURF segmentations for the three different manual

outlining protocols. Yellow represents manual hippocampus segmentations and green the FASTSURF segmentation using seven

contours. Hippocampi are from different subjects randomly chosen from each dataset. Top and bottom are the same hippocampi

shown in different orientation in 3D space.

https://doi.org/10.1371/journal.pone.0210641.g005
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threshold, i.e. for Fig 7 after eight contours and for Fig 9 and Fig 10 after six contours. The Jac-

card indices of Fig 10 are slightly smaller than their biased variants and the PVD values are

Fig 6. Agreement between manual and FASTSURF segmentations using a varying number of input contours for

Dataset 1. Top boxplot shows Jaccard indices and the bottom boxplot PVDs. The small circle and the star sign are

outliers defined by the SPSS software, with the star sign being a “far out” outlier.

https://doi.org/10.1371/journal.pone.0210641.g006
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centred around zero for six contours and more. It is maintained that FASTSURF with only

five contours performs better than the tested automatic methods. Also, Jaccard indices and

PVDs for manual BTB hippocampus segmentations are presented, indicating the reproducibil-

ity of the manual observer. Manual hippocampus segmentation is often regarded as the “gold

standard” [34,49], thus manual outline reproducibility represents a desirable level of accuracy

to be reached. In study design, manual outline reproducibility is the maximum level of accu-

racy that can be reached with FASTSURF, because we extract contours from manual segmen-

tations and FASTSURF segmentation follow the shape of these contours. Similar boxplots

Fig 7. Agreement of FASTSURF with manual hippocampus segmentations for Dataset 2. Top boxplot shows Jaccard indices

and the bottom boxplot PVDs. Both plots are split into three panels, each representing one group (CTRL, MCI and AD). The small

circle and the star sign are outliers defined by the SPSS software, with the star sign being a “far out” outlier.

https://doi.org/10.1371/journal.pone.0210641.g007
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were obtained for M12 scans’ segmentations which can be viewed in the supplementary files

(S1 and S2 Figs). S3 and S4 Tables display all corresponding mean and standard deviations.

The bias was quantified by subtracting unbiased results (JaccUnbiased and PVDUnbiased)

shown in Fig 10 from the biased results (JaccBiased and PVDBiased) shown in Fig 9 as a function

of input contours. As expected, for both BL and M12, the bias increases with increasing num-

ber of contours and ranges from 0.032(±0.0139) to 0.087(±0.0239) for the Jaccard indices and

from -0.321(±2.5586)% to -2.477(±3.3234)% for PVDs.

With six or more contours, Jaccard indices and PVDs are relatively consistent–six contours

would theoretically reduce segmentation time by approximately one third considering that the

mean number of outlined contours for this dataset of ~20.

In Fig 11 three scatter plots show the correlation of hippocampal atrophy rates as deter-

mined by manual segmentations and FASTSURF using 4, 7 and 10 contours for the A scans’

hippocampi. Correlations (R2) for other numbers of input contours are given in Table 5. The

last three lines in Table 5 present analogous correlations comparing atrophy measurements

based on manual and FSL-FIRST, manual and FreeSurfer, and finally manually determined

atrophy using A and the B scans.

The correlation expectably increased with increasing number of contours. Atrophy rates

derived from FASTSURF correlated consistently better with manually measured atrophy rates

than atrophy rate measurements based on either automatic segmentation method. Even

though this comparison is biased towards FASTSURF, the difference in R2 between automatic

segmentation and FASTSURF is much larger than the estimated bias reported above. Similar

results were obtained when using B-scans instead of A-scans.

Fig 8. Relation between volumes in cm3 of fully manual hippocampus segmentation and Jaccard indices obtained

from the comparison of FASTSURF segmentation using seven contours and the manual segmentations. At the

bottom the volume histogram is plotted to show volume frequencies for specific groups.

https://doi.org/10.1371/journal.pone.0210641.g008
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4. Discussion

This study was performed to show the proof of concept of a novel semi-automatic hippocam-

pus segmentation method (FASTSURF) which can substantially reduce segmentation time

while maintaining high accuracy.

The novelty of FASTSURF is that it is entirely based on mesh processing procedures, i.e.

image intensity, structural shape information or atlases are not needed. Therefore, we believe

Fig 9. Agreement of FASTSURF and automatic segmentation methods with manual segmentations using BL scans. Left and

right hippocampus segmentations were grouped together. Left boxplot shows Jaccard indices and the right boxplot PVDs. The small

circle and the star sign are outliers defined by the SPSS software, with the star sign being a “far out” outlier.

https://doi.org/10.1371/journal.pone.0210641.g009
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that FASTSURF is less prone to image noise or artefacts compared to intensity-based methods.

Furthermore, the completion of a hippocampus given a sparse set of contours is computation-

ally inexpensive and hippocampi are reconstructed within a second. The hippocampus is a

thin seahorse-shaped structure which has geometrically more variation in shape than other

subcortical brain structures or other soft tissue structures in the body. Since FASTSURF does

not require specific anatomical a priori knowledge other than smoothness we expect that FAS-

TSURF can also be used to outline different anatomical regions with similar or even better

accuracy, depending on the shape of the structure.

Fig 10. Robustness analysis of FASTSURF and automatic segmentation methods using BL scans. Left and right hippocampus

segmentations were grouped together. Left boxplot shows Jaccard indices and the right boxplot PVDs. The orange boxes (left most

boxes) illustrate the reproducibility of segmentation in BTB scans and gives a measure of the maximum possible level of accuracy.

The small circle and the star sign are outliers defined by the SPSS software, with the star sign being a “far out” outlier.

https://doi.org/10.1371/journal.pone.0210641.g010
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Using simulated input extracted from different datasets we quantified the agreement to

manual hippocampus segmentation by the Jaccard index and PVD measures. With FAS-

TSURF we reached good accuracy with a Jaccard index of higher than 0.67 (equivalent to a

Dice overlap of 0.8) by using only five contours for dataset 1 (μ = 0.75±0.035), seven contours

for all groups in dataset 2 (μCTRL = 0.76±0.025, μMCI = 0.74±0.034, μAD = 0.72±0.043) and five

contours for all groups in dataset 3 (Biased: μCTRL = 0.78±0.030, μMCI = 0.77±0.033, μAD = 0.76

±0.026; Unbiased: μCTRL = 0.73±0.033, μMCI = 0.73±0.035, μAD = 0.72±0.031). Furthermore, as

it can be seen from the Jaccard indices from dataset 3, the agreement to manual segmentation

was considerably better than both tested automatic methods with only five contours for both

biased and unbiased comparisons. Mean PVDs with five contours still seem to be quite high,

ranging from 2.40(±3.67)-8.20(±3.71)% across data sets. PVDs improve considerably from

Fig 11. Scatter plots with atrophy rate measurements (PVC from baseline to follow-up) comparing FASTSURF and manual segmented hippocampi of the A

scans from Dataset 3.

https://doi.org/10.1371/journal.pone.0210641.g011

Table 5. R2 values measured to compare atrophy rate measurements of A-scans’ manual hippocampus segmenta-

tions with automatic methods and FASTSURF.

Comparison R2

Man. vs FASTSURF 4 Cont 0.594

Man. vs FASTSURF 5 Cont 0.541

Man. vs FASTSURF 6 Cont 0.599

Man. vs FASTSURF 7 Cont 0.752

Man. vs FASTSURF 8 Cont 0.733

Man. vs FASTSURF 9 Cont 0.807

Man. vs FASTSURF 10 Cont 0.845

Man. vs FIRST 0.024

Man. vs FS 0.015

Man. A vs Man. B 0.041

Man. Manual, FS FreeSurfer, FASTSURF # Cont. FASTSURF segmentations with # Contours

https://doi.org/10.1371/journal.pone.0210641.t005
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seven contours onwards with mean PVDs ranging from 0.02(±2.40)–3.2(±3.40)% for the dif-

ferent data sets.

With dataset 3 we were also able to determine atrophy rates and compare atrophy rate mea-

surements of FASTSURF, FreeSurfer and FSL-FIRST with manual segmentation. From Fig 11

and the R2 values of Table 5, it is evident that atrophy measurement using FASTSURF agrees

more closely with atrophy derived from manual outlines than atrophy determined by either

automatic segmentation methods. Visually inspecting Fig 11 and Table 5 suggests that using

FASTSURF hippocampus segmentations with seven to ten input contours is sufficient with R2

values ranging from 0.75–0.85. Therefore, if this type of outlining protocol would be used, we

recommend the use of seven contours as a practical compromise between accuracy and delin-

eation time.

Most of our comparisons show very promising results in terms of accuracy of volume, Jac-

card index and atrophy, but for part of the data sets they are biased. However, the unbiased

robustness analysis performed with dataset 3 confirmed that FASTSURF segmentations agree

better with manual segmentations than both automatic segmentation methods. Good and con-

sistent overlap indices and PVDs were obtained by using six or more contours–our atrophy

measurements suggest the need of seven or more contours. The robustness analysis indicates

that slight variations of contour outlines does not affect the performance of the reconstruction

method and that the bias is small. Therefore, our results suggest that these conclusions are

equally valid for the data sets segmented with other protocols, but this needs to be confirmed

in future studies.

The HarP protocol is the most modern and broadly accepted protocol in neuroscience,

used to perform standardized and reproducible manual hippocampal segmentations [35]. In

this study, HarP simulated contours were reconstructed with FASTSURF and compared to the

manual counterpart segmentation. Results show high and consistent accuracy with eight or

more contours–eight contours would reduce segmentation time by one fourth. This compari-

son is biased, but results of dataset 3 indicate that the bias is relatively small. We suggest that

HarP can be combined with FASTSURF with minimum loss of accuracy, but this needs to be

validated in future studies. Therefore, we conclude that FASTSURF would be very useful for

efficient and reproducible hippocampus outlining. In radiotherapy, after delineating the hip-

pocampus, a 5mm margin is placed around the hippocampus determining the region for dose

sparing [10]. With FASTSURF we obtained high overlap results for hippocampi of dataset 1

with only five contours, indicating that this method can possibly be used for delineation in hip-

pocampal sparing brain irradiation.

We emphasize that the completion of the hippocampus given a sparse delineation is com-

putationally inexpensive and hippocampi are reconstructed within a second. Automatic seg-

mentations, due to registration procedures of atlases, are usually computationally more

expensive and it takes multiple minutes or hours to obtain a hippocampus segmentation. This

leads to another advantage of FASTSURF because atlases, registration procedures, or parame-

ter tweaking are not needed.

Compared to literature, we obtained similar overlap and PVD results for both automatic

methods in comparison to manual segmentation [12,14,16–23,24–26]. Most of the literature

mentions that automatic segmentation methods are comparable to manual hippocampus seg-

mentation, i.e. show similar hippocampal volume trends for diagnostic groups, but they still

need to improve to become as good as the gold standard. Recent papers even suggested that

FreeSurfer might be used clinically for specific applications [23,24]. We showed that with FAS-

TSURF, segmentations are consistently closer to manual hippocampus segmentations than

FreeSurfer and FSL-FIRST without producing outliers. This suggests that FASTSURF is possi-

bly closer to clinical implementation than automatic segmentations.
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Comparison of FreeSurfer and FSL-FIRST with manual segmentations from dataset 3

might not be completely fair, because both automatic methods are trained with a different out-

lining protocol from the Center of Morphometric Analysis (CMA). The ANOVA volume anal-

ysis also indicates an overall outlining protocol difference with p-values lower than 0.005.

However, with the post hoc ANOVA volume analysis we actually showed that BL left and right

hippocampal volumes from FreeSurfer and manual segmentations were not significantly dif-

ferent (p = 0.341 and p = 0.070), but FSL-FIRST and FreeSurfer volumes were significantly dif-

ferent even though they were trained on the same outlining protocol (BL left: p = 0.070; BL

right: p = 0.000009; M12 left: p = 0.030; M12 right: p = 0.000003). This indicates that at least

on a volumetric level the outlining protocols are not very different. Extensive manual–auto-

matic hippocampus segmentation analysis has been done previously, therefore we did not

expand this outlining protocol investigation. Here, we merely demonstrate that FSL-FIRST

and FreeSurfer hippocampus segmentations are less close to manual segmentations than FAS-

TSURF segmentation, but for a completely unbiased comparison FreeSurfer and FSL-FIRST

would have been trained with the same outlining protocol.

Furthermore, it would be interesting to compare FASTSURF to other automatic segmenta-

tion method such as multi-atlas/template-based segmentation methods [50,51], patch-based

segmentation methods [52] or modern deep learning based methods as they emerge. In terms

of segmentation results and segmentation speed the patch-based method seems very promis-

ing. In future studies, multi-atlas/template-based segmentation methods can be trained and

tested with the manual segmentations from dataset 2 or 3 and finally, these methods can be

compared to FASTSURF segmentations. Currently, the comparison to FSL-FIRST and Free-

Surfer is the most important because these are the most used and tested publicly available seg-

mentation methods.

Considering segmentation time reduction, we are not able to exactly predict how much

time an observer would save for hippocampal segmentation, because this is a simulation study.

As a rough estimate, one can take the number of contours taken for reconstruction, divide it

by the mean number of total contours and multiply it by an estimated segmentation time for

total hippocampus segmentation. As an example, if an expert rater takes ~2h to segment the

left and right hippocampus outlining 36 slices, using our method the rater would only take

~30min if he/she outlines the hippocampus on 9 slices. Suggesting an optimal number of con-

tours for accurate hippocampus reconstruction also depends on the desired level of accuracy.

We think that with our method the number of contours can be at least reduced by half, if not

by three quarters.

This study has two minor limitations. So far, only one contour on each slice is allowed to be

outlined. This might not always be sufficient, because hippocampal atrophy can cause irregular

hippocampal shapes leading to two or more contours per slice. Furthermore, if the hippocam-

pus contains cavities that should be excluded from the hippocampal volume special precau-

tions in the outlining software need to be implemented to account for such structures.

Another limitation of this study is that sparse segmentations were simulated from full man-

ual segmentations. The present study was intended to demonstrate the proof of concept by

providing initial validation. Future studies should produce true sparse delineations de novo,

ideally including independent sparse delineations from multiple observers for a more complete

validation. Furthermore, observers usually inspect neighbouring slices to outline the hippo-

campus. In theory, sparse segmentations could also be obtained by inspecting the neighbour-

ing slices, which might slightly affect the delineation time.

FASTSURF is based on smooth interpolation and therefore it is, in its present form, not

suited to delineate structures with irregular shapes such as tumours. However, for smooth

structures such as the amygdala, thalamus, putamen or the caudate nucleus FASTSURF might
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work as well as for the hippocampus. Furthermore, manually selecting and including addi-

tional contours at inflection and high curvature points most probably improves FASTSURF’s

accuracy for segmenting irregular shapes.

5. Conclusion

FASTSURF provides hippocampus outlines that are highly similar to completely manual seg-

mentations and agree consistently better with manual segmentations than automatic segmen-

tation methods (FSL-FIRST and FreeSurfer). Dependent on its implementation and the

associated workflow, FASTSURF can reduce the time for expert observers to at least a half.

Because in principle observers do not need to be retrained and because the method is compu-

tationally inexpensive, the proposed method is expected to be easily integrated into existing

workflows. Future work needs to validate FASTSURF with partial segmentation performed by

expert raters, which might lead to a possible usage of this method in the clinic.
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